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Bruce M. Law
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601
(Received 11 March 1993)

In the two-phase region of a critical binary liquid mixture a wetting layer of the heavier phase can
occur at the upper liquid-vapor surface sufficiently close to the critical temperature. This wetting layer
can be either stable or metastable to long-wavelength capillary wave fluctuations on the adjacent critical
interface. The stability depends upon the sign and slope of the dispersion force curve F(d). We classify
the four main generic shapes for F(d), which determines the stability or metastability of the wetting lay-
er, in terms of the relative magnitudes of the static and visible dielectric constants for the two liquid
components. For realistic values of the liquid-mixture parameters we calculate the critical wavelength
beyond which fluctuations are unstable and also determine the lifetime of the metastable state. The life-

time can vary from seconds to many hours.

PACS number(s): 68.15.+e¢, 64.60.My, 47.20. —k

I. INTRODUCTION

Wetting layers have been the subject of intense study
for many years [1], ever since Cahn [2] predicted a first-
order wetting transition at the noncritical surface of a
critical binary liquid mixture (of 4 and B molecules) on
approaching the critical temperature 7,. In Fig. 1 we
show the heavier 8 phase (with the B the majority com-
ponent) wetting the upper as surface, where the noncriti-
cal phase s can be either a vapor or a solid. The typical
equilibrium thickness d, of the wetting layer is ~20-200
nm. The equilibrium properties of wetting layers are well
understood.

There are three conditions that must be satisfied in or-
der that a wetting layer exist at the as surface:

(i) o, <04, Where o is the surface tension between
phases i and j. This condition is obviously necessary in
order that B molecules lower the as surface free energy.

(ii) The temperature must be greater than the wetting
transition temperature T,,. Below T, opg +0,5>0,
while at T,, and above Antonow’s rule holds, namely,
O'Bs +0aB=0as [3]

(iii) The thickness of the wetting layer is determined by
gravity which thins the wetting layer and dispersion
forces F(d), which thicken the wetting layer according to
the equation [4,5]
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FIG. 1. Schematic diagram of the heavier 8 phase wetting
the upper as surface. The wetting layer has a thickness d, while
the height of the bulk « phase is L.
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F(dy)+ApgL =0 . (1)

Here the mass density difference Ap=pg—p,, g is the ac-
celeration due to gravity, L is the height of the bulk «
phase, and the wetting-layer thickness has a value of d,
which in equilibrium will be denoted by d,. For an equi-
librium wetting layer to exist F (d) must be negative [5].

If any of the conditions (i)—(iii) are not met then the
structure of the as surface is governed by critical adsorp-
tion rather than wetting [6,7]. In critical adsorption the
composition at the as surface is a function of distance
into the liquid where the composition profile scales with
the bulk correlation length £. In contrast to critical ad-
sorption, a wetting layer of thickness d has a constant
composition equal to the bulk S-phase composition.

It is perhaps less well known that if (i) and (ii) hold but
(iii) does not hold that a long-lived metastable wetting
layer of the 3 phase (with zero contact angle) can still ex-
ist at the as surface. We will examine the conditions un-
der which this occurs in this paper and determine the
lifetime of the metastable wetting layer. The results in
this paper can be readily extended to metastable wetting
layers in other systems such as at microemulsion sur-
faces [8].

This paper is organized as follows: In Sec. IT we deter-
mine the main shapes for the dispersion force curve F (d)
as a function of the wetting-layer thickness d. At a
binary liquid-vapor surface there are four main disper-
sion force curves determined by the sign of Aey=¢,0—€p
and Ae€,=¢€,, —€g,, where the subscript O (v) indicates
the static (visible) dielectric constant. Specifically, (i)
Aey>0 and A€, >0, F(d) <0, and the wetting layer is al-
ways stable; (ii) Ae;<0 and A€, >0, F(d) changes from
negative to positive with increasing d, and at large d the
wetting layer is metastable; (iii) Ay, >0 and A€, <0, F(d)
changes from positive to negative with increasing d, and
at small d the wetting layer is metastable; finally, (iv)
Ae€y<0 and Ae, <0, F(d) >0, and the wetting layer is al-
ways metastable. Metastable wetting layers are unstable
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to capillary-wave fluctuations greater than a critical
wavelength A,. We determine the critical wavelength
and lifetime 7,, of the metastable state for realistic
binary-liquid-mixture parameters. The lifetime can vary
from seconds to many hours. Our results are discussed in
Sec. I1I.

The equations for A, and 7,, used in Sec. II were ob-
tained from Vrij and Overbeek [9], who considered the
rupture of a film of total surface tension y. It is not clear
how their results apply to our situation where the wetting
layer is very asymmetric with o, >>0,5 In the Appen-
dix we show that the wetting layer is unstable to long-
wavelength capillary-wave fluctuations on the critical af8
surface and therefore Vrij and Overbeek’s analysis is val-
id with y /2 replaced by o .

II. STABLE AND METASTABLE WETTING LAYERS

Whether an equilibrium wetting layer can exist de-
pends upon the sign and slope of F(d). It has often been
|

kyT
Fld)=—"
me j=0

where

fi(x)=(s; +px)/(s; —px) (3b)
and

s;=(€; /65— 1+pH?2, i=1,2. (3¢)

The quantity kp is Boltzmann’s constant, c is the speed of
light, £, =2wjky T /#, 27#i is Planck’s constant, and €y, €,
and €; are the frequency-dependent dielectric constants
of the three media evaluated at the imaginary frequencies
o=if;. The prime attached to the summation denotes
that the term with j=0 is to be given half weight. The
excellent pedagogical paper of Kayser [5] demonstrates
how to calculate F(d) for critical binary liquid mixtures
using (3).

As mentioned previously the sign of F(d) is very im-
portant in determining the stability or metastability of a
wetting layer. It is difficult to obtain an intuitive under-
standing of the behavior of F(d) from (3) because of the
complexity of this equation. Israelachvili [12] has
presented an approximate expression for F(d), which is
valid for nonretarded van der Waals forces. His expres-
sion allows us to qualitatively interpret the main features
of F(d). In the nonretarded regime the Hamaker con-
stant is given approximately by

A=A;ot4;,, (4a)
where
Aj—o~kpT(€,0— € €50 €po) » (4b)

Aj >0~ﬁwuv( €ay —GBU X €v GBU ) ’ (4c)

assumed in the literature that the dispersion force can be
modeled by a simple power-law function of the form

A

F(d)=——+
() 6md?

()

for nonretarded van der Waals forces, where A4 is the
Hamaker constant. Such a model is correct for very thin
wetting layers (d =5 nm) [10]; however, for the wetting-
layer thicknesses observed in practice (=20 nm), this is
not a good approximation. For real systems F(d) is often
far more complicated and can even change sign as a func-
tion of d. F(d) must be calculated from the
Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) theory of
dispersion forces [11], which requires as inputs the order
parameter for the binary liquid mixture of interest and
dispersion data for the pure liquid components [5]. Ac-
cording to the DLP theory for arbitrary media, 1, 2, and
3 corresponding to s, a, and 8 above,

s a8 [ pdp (£ (1exp(2pg;€dd /)= 117+ [f1(er/&)f 5 (€2/€)exp(2p el *d /)= 1] 1]

(3a)

[

where €;, and €;, are, respectively, the static and visible
dielectric constants of medium / and ,, is a characteris-
tic electronic absorption frequency (~2X10'® Hz). If
one of the components of the liquid mixture is polar the
static dielectric constants €,, and €g may be very
different and the zero-frequency component (j=0) can
be very important and make a significant contribution to
F(d). At small d <<c/w,, all contributions to F(d) are
nonretarded and decay as d ~°. For most liquid mixtures
the dominant contribution comes from the visible com-
ponent so that A4;., determines the sign of F(d) for
small d. At larger d = c/w,, (~ 10 nm) the visible contri-
bution to F(d) becomes retarded and decays as d ~* while
the zero-frequency contribution remains nonretarded and
eventually dominates F(d) for sufficiently large d. There-
fore at large d the sign of F(d) is determined by 4;_,.

For a binary liquid-vapor surface (e,=1) four main
possibilities can occur, depending upon the relative mag-
nitudes of €,,,, €g,, €40, and €p, (Fig. 2).

(i) €g, <€,, and €gy <€,0. In this case F(d) is negative
and a monotonic increasing function of d. For any value
of the gravitational force there is one equilibrium value of
the wetting-layer thickness given by the intersection of
—ApgL with F(d). If the wetting layer is prepared in a
state with a thickness other than d, the wetting layer
will approach d, via diffusion-limited growth [13].

(ii) €, <€,, and €g>>€,. The static contribution is
positive while the visible contribution is negative. For
this situation F(d) changes from negative to positive with
increasing d. The static term makes a significant contri-
bution at small d and a dominant contribution at large d
so that there is a maximum in F(d). For all values of the
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FIG. 2. Dispersion force curves F(d) as a function of the
wetting-layer thickness d calculated using the parameters for
critical hexadecane plus acetone at a reduced temperature of
t=10"2 ‘The static, microwave, and visible dielectric constants
have been permuted in generating curves (i)—(iv); their values
are listed in Ref. [15]. Curve (i) Aey> 0 and A€, >0; (ii) Ay <0
and A€, >0; (iii) A€y>0 and A€, <0; and (iv) Ae;<0 and
A€, <0. Metastable wetting layers with 0F /dd <0 are indicat-
ed by the heavier line.

gravitational force there is a corresponding equilibrium
wetting-layer thickness given by the intersection of F(d)
with —ApgL. However, if a wetting layer is prepared
with sufficiently large d such that 0F /dd <O [indicated
by the heavier line in Fig. 2, curve (ii)], then this wetting
layer will be unstable to long-wavelength capillary-wave
fluctuations, as will be discussed below. Such a wetting
layer would be metastable with a lifetime given by 7,
below.

(iil) €g, > €,, and €gy <<€, The static contribution is
negative while the visible contribution is positive. In this
case F(d) is positive for small d; however, at large d it
changes sign and passes through a minimum in F(d).
For small ApgL below a minimum Fg(min) (~0.24
dyn/cm? in Fig. 2) there are two solutions to Eq. (1): one
which is metastable (indicated by the heavier line in Fig.
2 where 3F /3d <0) with a lifetime 7,, and the other
which is stable. For ApgL > Fs(min) no wetting layer
can exist in equilibrium.

(iv) €p, > €,, and €g>€,. F(d) is positive for all d
and a wetting layer cannot exist in equilibrium. All wet-
ting layers are metastable with lifetime 7,,.

In calculating Fig. 2 we have used the DLP theory
with the parameters for hexadecane plus acetone [14]
where we have interchanged either (€,5/€;,+) and/or €,
between liquid A and liquid B, where €, is the mi-
crowave dielectric constant for liquid i. The notation
(€;0/€;, +) means that both €;; and €, ; are interchanged.
The critical liquid mixture hexadecane plus acetone at a
reduced temperature ¢ =102 is represented by curve (ii)
in Fig. 2, while curves (i), (iii), and (iv) have (€;5/€;, ;)
and/or €; interchanged. In [15] we list the various
values for €;,, €;, 1, and €;, used in generating the curves
in Fig. 2.
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Vrij and Overbeek [9] previously considered the meta-
stability of films, of total surface tension ¥, to capillary-
wave fluctuations. We demonstrate, in the Appendix,
that wetting layers are unstable to long-wavelength fluc-
tuations on the af3 interface and that therefore Vrij and
Overbeek’s results are applicable with y /2 replaced by
O o

IBn the metastable wetting region (heavier curves in Fig.
2), where oF /9d <0 capillary wavelengths A, larger than
a critical wavelength
172

4%
= (5)

A= 1~ 3F/ad

c

are unstable to fluctuations on the af3 interface. The
characteristic lifetime for a particular capillary wave vec-
tor k (=27 /A) is given by [9]

T(k)z—%l Lhrto k| (6)

where 7 is the film viscosity. The lifetime 7 depends
upon k and has a sharp minimum when A=2!72A_,
where the minimum lifetime is

480,
ry=— o

dF

3|98

d ad

We have plotted the critical wavelength A, (Fig. 3) and
the minimum lifetime 7,, (Fig. 4) for the metastable re-
gions of Fig. 2 [curves (ii)—(iv)]. One observes from Fig.
4 that the lifetime 7,, can vary from seconds to many
hours, depending on the signs of Ae, and Ae, and de-
pending on the thickness of the metastable film. The
breaking time 7, of a metastable film is a simple multiple
of 7, [9],

T ~fTm » (8)

where f~7 for d ~50 nm and o ,3~0.15 erg/cm’. The
critical liquid mixture hexadecane plus acetone is de-
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FIG. 3. Plot of the critical wavelength A, for the metastable
regions of Fig. 2 above which capillary-wave fluctuations are
unstable. The designations (ii), (iii), and (iv) correspond to the
same designations in Fig. 2.
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FIG. 4. Plot of the minimum lifetime 7,, for the metastable
regions of Fig. 2. The designations (ii), (iii), and (iv) correspond
to the same designations in Fig. 2
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scribed by curve (ii) in Fig. 4; the observed breaking time
qualitatively agrees in magnitude with the observations in
a previous publication [14].

III. CONCLUSION

For highly polar liquid mixtures the zero-frequency
contribution to the dispersion force can be very large at
all thicknesses of the wetting layer. The stability or me-
tastability of a wetting layer depends upon the sign and
slope of the dispersion force at each thickness. From the
relative magnitudes of the static and visible dielectric
constants of the two components in a binary liquid mix-
ture we have determined the four major forms for the
dispersion force F(d), which can occur in the two-phase
region at the binary liquid-vapor surface.

With the advent of the technique of reflectance fluctua-
tion spectroscopy [16], which allows one to measure the
viscosity of the wetting layer and 0F /dd, it should be
possible to quantitatively test the theory of film rupture
as presented in (7) and (8). A critical binary liquid mix-
ture is particularly convenient for tests on film rupture
because the critical surface tension o,z=o0yt", where
pu=1.24, appearing in (7) is a sensitive function of tem-
perature. For critical liquid mixtures which obey (2),
where A ~t5 with the critical exponent $=0.33, the crit-
ical wavelength A, ~t#~#/2 while the minimum lifetime
T, ~t* "% and metastable wetting films rupture more
quickly at smaller reduced temperatures.

A quantitative examination of film rupture would aid
in the understanding of foams whose stability is not well
understood [17]. Surfactant solutions which constitute
foams and also microemulsions [8] have an additional
contribution from double-layer forces where the total sur-
face force per unit area is given by [12,18]

F=F4,+Fp. , Fp,=—Bkhexp(—kpd), 9

where F g, is the dispersion force given in (3) and Fp is
the double-layer force, with «p the inverse Debye length
and B >0. Therefore the double-layer force always stabi-
lizes the wetting layer against capillary-wave fluctuations
on the aff surface, namely, dF; /9d > 0.

Throughout this paper we have ignored the effects
from diffusion-limited growth of the wetting layer [13]; in
reality the wetting film will slowly approach the equilibri-
um wetting-layer thickness via diffusion. For critical
binary liquid mixtures the diffusion time constant is usu-
ally very large [13].

Finally, we note in passing that Dietrich and Latz [19]
and Getta and Dietrich [20] have published some impor-
tant related work where they classify interfacial wetting
behavior from a somewhat different perspective than
presented here.
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APPENDIX

In this appendix we consider the dispersion relation for
a wetting layer in contact first with a solid and second
with a vapor.

1. Wetting layer in contact with a solid

The surface wave has a spatial and temporal depen-
dence of expli(k-r—wt)], where k=(k,,k,) is a two-
dimensional surface wave vector, r=(x,y), @ is the fre-
quency of the wave, and k =(kf+ky2)1/2. One can readi-
ly show [21] that, for an inviscid liquid of constant densi-

ty, the linearized hydrodynamic equations reduce to
(D*—k*w=0, (A1)

where w is the velocity of the liquid in the vertical z
direction and D =d /dz. Consequently

_ A cosh(kz)+ B sinh(kz) , 0<z<d (A2a)
W= 1Cexplkz), z<0, (A2b)
where A, B, and C are constants.
For a solid surface
wg, =w(z=d)=0, (A3)

while the boundary condition at the af3 surface is [21,22]

oF
wa3+§wﬁs ] .

oF

_k? g2, _ OF
Ao(pDLU)— a)2 { ng(p) k (o] od

(A4)

In this equation oF /dd is often represented as — 3w /dd,
where 7 is the disjoining pressure [22] and the notation
A (f)=f(z=s+)—f(z=s—) represents the jump in
quantity f at interface z=s, while w,; is the common
value of the vertical velocity at z=0. We necessarily
have no discontinuity in the vertical velocity at this sur-
face,

Wes=w (0+)=w(0—) . (A5)

From the three boundary conditions (A3)-(AS) we can
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eliminate the three constants A4, B, and C in (A2) to ob-
tain the dispersion relation [23]

—k |g8p— k20 5= 35 |tanh(kd)
i= . A6
@ pptp tanh(kd) (A6)

The wetting layer is unstable to fluctuations on the af
surface when w? <0, namely, for capillary wavelengths A
greater than

Am’o 12
A= ——% (A7)
8803

This equation agrees with the results in Sec. II and with
Ref. [9]. In Sec. II we have ignored the gravitational
term because it is, in general, at least two orders of mag-
nitude smaller than dF /dd except very near a maximum
or minimum in F(d).

2. Wetting layer in contact with a vapor

We generalize the analysis of the preceding section to
the case where the s surface has capillary-wave fluctua-
tions. For such a situation the boundary condition (A3)
is no longer valid; the condition on the Bs surface takes a
form similar to (A4), namely,

2

Ay(pDw)= L oF oF
o

+__
od ]w’“ ad Vb
(A8)

The bulk-fluid equations (A2) continue to hold in this sit-
uation where the boundary conditions (A4), (AS5), and
(A8) are used to eliminate A4, B, and C. The most general
dispersion equation is very complicated. It is necessary
to make some approximations. We assume the following.

W) Eup=wog/0>>Cp =wg, /@, where §; is the magni-

> 1 |88alp)—kop—
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tude of the fluctuations on boundary i. This is a reason-
able approximation as the restoring forces on the af3 sur-
face are much smaller than on the Bs surface.

(ii) k%0 g, >>Apg, dF /dd. The surface tension provides
most of the restoring force at the SBs surface for wave-
lengths less than the fBs capillary length.

(iii) k20 ,3>> Apg.

(iv) kd << 1. This is the most important limit in prac-
tice because the critical wavelength A, is much larger
than the wetting-layer thickness d.

One can show that with these assumptions the disper-
sion relation reduces to

w4papﬁ—w2k3p3(aﬁs+oaﬁ)+ k5053h=0 ,

oF
k20'a5+ a

(A9)

which has, to a good approximation, the following two
solutions:

k3og +0,5)
wﬂz—_—ﬁs—aﬁ (A10a)
Pa
and
k’h oF
wz_z"p;“ kza'abw‘f'a (AIOb)

The o, solution is the dispersion relation for waves on a
liquid-vapor surface with surface tension (o ,5+0p ). It
describes the ‘“‘undulatory mode,” where the upper and
lower surfaces move in phase with essentially equal am-
plitudes [24]. The w_ solution describes the ‘“peristaltic
mode,” where the upper and lower surfaces move out of
phase and the upper surface wave amplitude is much
smaller than the lower surface wave amplitude [24]. The
dispersion relation (A10b) again leads to the critical
wavelength given in (5).
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